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Abstract—Many companies develop customized products for
their customers. The customer, with the assistance of the sales-
person, will typically provide a description of the product and the
company must then use that description to determine the type
and quantities of materials required to produce the product. This
information is then used to derive the cost of production from
which a price can be determined. We use Machine Learning
techniques to automate this process. The product description is
analyzed using Natural Language Processing to extract the rele-
vant information. This information, along with other attributes,
are then fed into a Deep Neural Network (DNN). The DNN has
an output for each possible component of the product with the
output value equal to the quantity of that component required
for the product. We illustrate the approach with a dataset taken
from a company that builds electrical distribution boards. Each
distribution board must be customized for the customer and
so the accurate determination of the components and their
quantities is vital in determining an appropriate price. Note that,
the component list (called the Bill of Materials or BOM) also
helps determine the processing required and this too affects the
production cost. We illustrate the effectiveness of our approach
with the data obtained from this factory.

Index Terms—Machine Learning, Bill of Materials, Pricing
Optimization

I. INTRODUCTION

The engineering bill of materials (BOM) is a document
instructing users on the components and quantities required
for the manufacture of a product. The BOM document is
primarily used across all manufacturing industries. Variants
of the document exists in other industries such as civil
construction, where it is referred to as a bill of quantities.
In all instances the BOM reflects the product as designed
by engineering and serves as a material requirement list for
manufacturing. BOMs can exist in a multilevel tree structure
with lower branches representing separate components that
often undergo sub-assembly operations before inclusion into
the final product [1]. The BOMs collected for this study do
not have a tree structure but can be represented as a two
dimensional array (Component Name, Quantity) for a given
product. The structure is an important distinction for the
method proposed as different techniques such as random forest
regression may yield better results on a tree structured BOM.
The inventory management department of a manufacturing
company uses the BOM for the procurement of components
and the issuing of materials to manufacturing. Our case study
focuses on a class of manufacturing entities known as job
shops. Jobs shops are characterized by high product variance

and low production volume, the value proposition of job shop
manufacturing is to tailor the product to the needs of the
customer [2]. The order processing cycle begins with the
receipt of a customer request. The request is answered with a
quotation and, if the customer confirms the purchase, the order
moves to the BOM estimation phase. BOM estimates are exe-
cuted by a separate department that rely on historical product
BOMs, approximate hand calculations and ad-hoc meetings
with the engineering department to create the estimated BOMs.
These estimates are used by the procurement department to
order materials in advance of the detailed engineering being
completed thereby reducing the overall delivery time. A just-
in-time manufacturing system as described previously allows
for reduced inventory carrying costs and higher profitability
for companies. For this industry, each customer order requires
a detailed engineering model to determine the materials and
quantities required. Models are created using computer aided
design software and can be a time consuming process. During
periods of high volume, the business can lose valuable time
as estimators may take weeks to complete large orders and
designers may take even longer for detailed product drawings.

In this paper, we present the use of deep neural networks to
predict BOMs for new products given the product quotation.
In our approach we do not attempt to replace the human
estimators however we seek to augment their work with
machine learning to boost their productivity. In the next section
we discuss related research in this area. In section III we
describe the dataset being used for our experimentation and
model evaluation. Section IV details the model and metrics
to be used followed by an analysis of the results in section
V. We then make our closing remarks and provide potential
future work.

II. RELATED WORK

Significant research has been done on an optimization prob-
lem often referred to as the ”job shop problem”. The simplest
iteration of the problem describes the minimization of total
production time for jobs that must be scheduled on machines
of varying capacity. Often, these manufacturing constraints are
characterized by the BOM in part, or in entirety [1]. While no
research was found on predicting the BOM directly from the
customer’s quotation, research was found in two relevant areas,
the optimization of the BOM generation system and predicting
the final product cost from the BOM.
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High variety production, as seen in jobs shops or mass
customization, faces a myriad of management challenges. In
order to manage these hurdles, [3] proposes clustering BOMs
into generic families. These generic families contain additional
operational data giving rise to a bill of material and operation
document. A holistic document like this allows for a high
degree of flexibility in manufacturing as relationships be-
tween component requirements and manufacturing processes
are defined for every product. Customization of products are
enabled in the generic BOM via parameter values linked to
the customer order. The parameters map components, sub-
assemblies or sub-sub-assemblies to the generic BOM mani-
festing a finished, customized product derived from the generic
BOM. While this method allows for efficient management of
BOM data and a reasonable degree of BOM generation, the
BOM variants are predefined. Our proposed method differs
from this as BOMs are not predefined but created (trained)
from past outputs (BOMs) and past inputs (customer requests).
While the algorithm determines rules for prediction, the rules
are learnt and not predefined. Therefore, the algorithm may
produce variants that have not been considered previously. The
output BOM of this paper differs in a second way to [3] as we
do not predict any operational data. If this data were readily
available it could be included to create a holistic BOM similar
to that in [3].

Activity based costing is an accounting methodology used
to determine the final cost of a product by allocating the costs
of the resources and activities consumed in creating a product.
Activity based costing requires analysis of direct costs (e.g.,
materials consumed) and indirect costs (e.g., maintenance of
equipment). For estimators it is often difficult to determine
indirect costs as they have not occurred yet or may not
explicitly relate to the product. [4] utilizes a neural network
to predict the final cost of a product by employing the final
product BOM as input data to the network. The model was
successful in estimating the indirect costs to manufacture a
product and by extension, the final cost to manufacture a
product (direct costs are determined from the product BOM
hence the algorithm already had this cost). The preceding
paper, does not propose a technique for estimating the product
BOM and hence the result of this paper would be the input of
the model in [4].

Multi-input and multi-output regression is often challenged
by volume, velocity, variety and veracity (the four V’s frame-
work of big data [5].) Volume expresses the size of the output
label space and can initially be large or grow over time posing
significant challenges to certain machine learning algorithms.
Label spaces can be denoted by binary outputs (multi-labeling
classification), ordinal outputs (multi-dimensional classifica-
tion), or as in the case of this paper, real valued vectors
(multi-target regression) [6]. The speed in which new labels
are gained in the dataset describes the data’s velocity and
poses a remarkable hurdle for machine learning. In particular,
our application could suffer from high velocity as the bill of
materials from the test company includes special components
required and supplied by customers. These components are

entered into the BOM causing rapid growth in the number of
labels. We manage velocity and volume in later sections using
a threshold frequency as these customer defined labels are
rarely and sporadically repeated. Variety refers to the mixture
of data types that can be found in the output labels and veracity
can be best described as the quality of the labeling. Our dataset
does not suffer from significant challenges in variety as all
outputs can be modelled as real valued vectors. The data
utilized in this study were the documents created by the BOM
estimators, while they may have errors from the estimators
themselves there is little noise or missing labels as this would
have be cross checked within the company before moving to
downstream processes.

Machine learning implementation in the workplace has gen-
erally taken three forms, task substitution , task augmentation
and task assemblage. Task substitution, as the name suggests,
is accomplished via complete automation of the task with
minimal human intervention required. Task augmentation is
seen when machine learning improves the productivity of the
human operator but does not replace the function entirely.
Finally, task assemblage occurs when humans and automation
are dynamically brought together resulting in new possibilities
or abilities. As stated in Section I, we intend to augment the
current BOM estimators work flow with machine learning
to boost performance. [7] discusses the implementation of
machine learning algorithms in businesses and presents a
similar implementation to ours. The business case revolves
around the automation of trade tables for commodities based
on shipping information. Shipping information is gathered
from the Automatic Identification System (AIS) as well as
contextual data manually transmitted by ships. The ambiguity
in some contextual data was a strong motivation for using task
augmentation or what the author refers to as “human in the
loop”. The human operates as a process control parameter by
producing ground truth analysis of the data and subsequently
correcting the algorithms output . This method worked suc-
cessfully and after some time the machine learning algorithm
was able to produce trade-tables that needed little adjustment
from the ground truths. Our implementation will follow a
similar approach where the BOM estimators will audit the
generated BOMs mitigating any inventory risk and improving
the models accuracy.

III. DATASET DESCRIPTION

The data obtained can be represented by a M×N+2 sparse
matrix containing 1347 rows (samples) and 843 columns. Two
columns contain text data describing the product. The first
of these two columns contains a detailed customer friendly
description of the product and the second is a shortened
version of the former that is typically used for identifying
key attributes about the product during manufacturing. The
remaining N = 841 columns represent a mix of continuous
and discreet variables with one column per component. Job
shops are constrained by limited training samples as they are
low volume operations and hence the limited sample size of
1347 samples is expected for 3 years of data. Due to the
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TABLE I
ILLUSTRATION OF DATASET CONTENTS (FOR A STOOL)

Long Description Short Description Legs Seat Paint Back

A red wooden
stool with four
legs and no
backrest

4-legged red stool 4 1 1 gal 0

Fig. 1. Occurrence Frequency of different Components

large size of a typical sample we illustrate what information is
provided using an illustrative example of a simple stool with
contents provided in Table I.

Figure 1 shows the frequency imbalance across the highest
occurring components. This behavior is expected as some
materials like steel, will be used for most products. Based
on company feedback, many of the components listed here
were one-time use or customer supplied devices. These special
items are not considered part of the company’s inventory and
would not be commonly procured, consequently, they are not
included in our study. Removing these components reduced
the label space from 841 to 183 components, we accom-
plished this by filtering out rare materials with a threshold
frequency. For our investigation the business suggested that 15
or less was an acceptable threshold frequency for removing
the rare items. These excluded items will be included by
the human estimators as they are usually customer specified
and are not components existing within the company. The
threshold method also acts as a control for the volume and
velocity challenges as discussed in Section II. Figure 2 shows
the frequency distribution per component, most distributions
exhibit a positive skew and the data was standardized for use as
outputs of the regression model. Standardization was done per
component as significant variations in magnitude can occur.

IV. DESCRIPTION OF MODEL

A. Problem formulation

Let X be a vector describing the product descriptions and as
such will contain inputs [X1, X2, ..., Xd]. Let Y be a vector
representing quantities of required components, such that Y
contains target variables [Y1, Y2, ..., YM ]. (x, y) are samples

Fig. 2. Frequency distribution of different Components

generated from the domains of X and Y and gives rise to a
set of training samples D = {(x1, y1), (x2, y2), ..., (xm, ym)},
hence our goal is to determine a function, h that maps every
sample of x to y, (h : x 7→ y). From here we enlist the help
of neural nets to create these mappings as described in the
following section.

B. Model Architecture

Our network architecture uses two input vectors, the first
contains the long description. This was reduced using n-
grams and uni-grams via TF-IDF (Term Frequency - Inverse
Document Frequency) as was done by [8]. If we consider a
single sample of a long description, then the Term Frequency
of term w in sample d is given by:

TF(w, d) =
Number of times term w appears in sample d

Total number of terms in the sample d

The IDF of the term w is given by:

IDF(w) = ln

{
Total number of documents

Number of documents containing w

}
The TF-IDF score of term w in sample d is then given by
TF(w, d)× IDF(w).

Using the TF-IDF method caused common words such as
”225A” and ”120/240V” to be under-represented in the inputs.
The second input contained some of these underrepresented
words and coupled with a small vocabulary, guided our use of
tokenization to reinforce their impact on the neural network.
The inputs were independently passed through multiple fully
connected layers with relu activation. As stated in the problem
formulation, we expected one input vector and as such the
inputs are concatenated to one vector and are subjected to
multiple fully connected layers with L1 and L2 regularization.
Due to the depth of our network, and the associated possibility
of unstable gradients we reduce the risk by using the ”He-
initialization” technique for layer weights as proposed in [9].
Finally, the output layer has a linear activation with the number
of neurons equal to the number of components. The number
of neurons, network depth, learning rate and regularization
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TABLE II
NETWORK HYPER-PARAMATERS

Parameter Minimum Maximum

Number of neurons (after concatenation) 1024 4096

Number of layers (after concatenation) 1 10

Dropout layer 0.0 0.2

l1 regularization 0.00005 0.001

l2 regularization 0.00005 0.001

Learning rate 0.000001 0.1

TABLE III
MAE FOR EACH OF THE 5 CV FOLDS

Fold MAE

01 0.125

02 0.137

03 0.152

04 0.108

05 0.121

parameters are all selected using a non-stochastic bandit
formulated algorithm for hyper-parameter selection referred
to as Hyperband [10]. The range of parameters given to
the network for optimization is shown in Table II. While
this increased training time, it ensured a high degree of
optimization as percent error translates directly to percent
cost for the manufacturer. The Deep Neural Network that was
determined through optimization is depicted in Figure 3.

V. ANALYSIS

We use the mean absolute error, MAE, to evaluate the
models baseline forecasting performance.

MAE =
1

N

N∑
i=1

∣∣∣ŷi − yi
∣∣∣ (1)

A good MAE reassures us that the model is able to predict
quantities with an acceptable degree of accuracy. We wanted
to be sure of this before including metrics that describe the
financial impact of using this algorithm.

The model was trained for 50 epochs using 5-fold cross-
validation. The average MAE was 0.125 over all folds. Our
output features were standardized for each component, indi-
cating an average MAE of 0.125 presents an acceptable error
in this application. Table III shows the results of each fold.

The objective of our algorithm is not only to perform well
on predicting quantities but also to reduce the financial risk
of incorrect choices. We took cost into account as follows.
For each component i we weighted the error by the unit cost
of the component ci. This cost was transformed using a min-
max normalization to ensure that the weights did not dominate
the loss function. The loss function will be referred to as the
weighted mean absolute error. If we denote the predicted and

TABLE IV
% COST ERROR FOR EACH OF THE 5 CV FOLDS

Fold % Cost Error

01 1.76

02 1.72

03 1.81

04 1.68

05 1.51

actual quantities of component i by ŷi and yi respectively then
this error for a given test sample is given by

WMAE =
1

N

N∑
i=1

∣∣∣ŷi − yi
∣∣∣ci (2)

As a result of component weighting, functions such as stochas-
tic gradient decent can become unstable and we opt for the
ADAM algorithm to perform gradient decent and increase
model stability during training. The weighted loss gives rea-
sonable results when translated into financial savings for the
company, we determine this using the percent error in cost
defined by equation 3

%CostError =

∑N
i=1

∣∣∣ŷi − yi
∣∣∣ci∑N

i=1 |yi|ci
(3)

Training and evaluation was implemented with the preced-
ing loss function and table IV shows the results

The average cost error of 1,7% represents an acceptable
financial risk to the company and it is worth reiterating
that this method will be deployed in augmentation with the
existing BOM estimators. The tool is intended to accelerate
their estimation process as they will audit the results of the
algorithm before releasing the BOM to downstream business
processes. Hence, the error found above represents a worst
case scenario provided the BOM estimators did not audit any
values. Our implementation of this model is available at [11].

The business case discussed in this paper can be sequenced
into two problems. The first being a multi-label classification
problem where given a corpus, we must select appropriate
labels (components) and secondly, a regression problem for
predicting the quantity of each label. Previously, we used
multi-input multi-output regression to predict the values for
each label but this approach lacks interpretability. It is unclear
to what degree the neural net was capable of deciding on what
components are needed and which are not. The MAE metric is
not able to readily answer this, hence, we test a deep neural net
optimized for higher recall to understand how well the weights
could be trained for multi-label classification for this data. The
test model utilized both inputs as the previous model and a
sigmoid output layer as shown in Figure 4. Our trial produced
an average F1 score of 0.74, indicating the correct labels could
be predicted with some degree of confidence by a deep neural
net. Table V shows the F1 scores for all 5 folds.
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Fig. 3. Model architecture

TABLE V
CLASSIFICATION METRICS FOR 5 CV FOLDS

Fold Precision Recall F1

01 0.80 0.73 0.76

02 0.78 0.65 0.71

03 0.77 0.70 0.73

04 0.81 0.69 0.75

05 0.79 0.68 0.74

At this stage, it was possible to train individual regression
models for every component and coupling this with the label
classifier we developed an alternative model for solving our
business problem. Figure 4 shows the architecture of this
model and it is worth noting that the multi-label classifier
and regression components were trained independently of each
other. We make predictions from the input data using both
parts of the model, the first part gives the applicable labels and
the second part gives the quantities. Both parts are combined
by the Hadamard product to give a final result. Five fold
cross validation yielded an average MAE of 0.124, while this
provides a precision boost over the multi-input multi-output
regression model used previously, it is not economical when
compared to the increase in computational requirements. The
detailed results of each fold are given in table VI

This deconstructed method was developed to add interpre-
tation to the neural nets ability to solve the problem. While
interpretation is important, the comparable MAE and low %
cost error from the multi-input multi-output regression make
it infeasible as a first choice.

TABLE VI
MAE FOR TWO-PART MODEL

Fold MAE

01 0.131

02 0.144

03 0.108

04 0.102

05 0.132

VI. CONCLUSION AND FUTURE WORK

We presented a method for estimating an engineering bill
of materials given the customer’s quotation. Our model is
tested with real world data from a job shop that manufactures
electrical panels and we utilize multi-output regression with
a custom loss function to minimize financial risk to the
company. The loss function is defined by computing the mean
absolute error and weighting it by the min-max scaled cost
of each component. The financial impact was determined by
the percent cost error and is used as an evaluation metric
alongside the MAE. Next, we attempted to understand how
well a deep neural net can perform on this limited data in
selecting appropriate labels. We trained a multi-label neural
net resulting in an acceptable F1 score indicating that the
model could adjust it’s weights sufficiently to predict the
high number of label spaces even with the limited data. We
then extended this by creating regressions for each label and
developed an alternative two-part model that resulted in a
similar performance as the multi-output neural net. This two-
part model was computationally expensive but added deeper
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interpretation to the neural nets ability.
Future work can be done with the methodology presented in

this paper by combining the works of [4] with ours, resulting
in deeper automation of manufacturing processes. Blending
the work in [4] with ours would compute the final cost of a
product starting from the customer’s quotation. A comparison
of methods such as multi-output support vector regression or
multi-target regression trees can be used for different BOM
structures such as those described in [3]. Class imbalance
was observed in the components frequency distribution and
while we weighted the loss function based on the product
cost, the algorithm can be improved using under-sampling or
over-sampling methods. The cost function could be improved
by weighting the impact of over-purchasing higher than the
impact of under-purchasing
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Fig. 4. Model architecture
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